Using Robots to Teach Technology Engineering

- Chris Beaton Technology Engineering Teacher Ashland High School
- Griffin Whittredge- Ashland High School Class of 2011
- Barry Biletch- Ashland High School Class of 2013
- Tim Abraham- Ashland High School Class of 2011
Using Robots to Teach Technology Engineering

- **Objectives**
 - Understand the use of hardware and software, specifically the iRobot Create, Botball CBC KISS C as a tool in solving problems using the Engineering Design Process
 - Provide an opportunity for you to think about exciting students about STEM
Kiss C

- C-Based Programming Language developed to support Botball CBC
 - Built in Library Functions ensure ease of use
 - Has a built in simulator and compiler for debugging
Using the Hardware

- iRobot Create
- Botball CBC v.2
iRobot Create

- Sturdy and reliable
- Easy to use
- Fast to get up and running
- Inexpensive (Relatively speaking)
CBC Processor

- Has a touch screen which can be very useful to students and teachers
- Has built in functionality
- Is simple to use.
- Software and updates are free!!!
Ports on the CBC

- If trouble arises with sensors, check the programmed port number with the physical port number.
CBC Sensors and Touch Screen

Select the sensors option on the next screen.
To view analog values, check (touch) the white checkbox which corresponds to the port(s) being used. In this case Analog 0

Provides user with “real time” feedback of sensor values

To view digital values, push the touch sensor. The value of the port(s) should change to 1. In this case digital 8
Using KISS C

- Click on KISS C icon
- Select CBC2
- Select Cancel on the port screen
- You should now be at the editor screen
Coding example:

Copy and paste this code into the KISS-C software

/*This code is designed to demonstrate the function of a while loop in KISS-C

while(condition)
{
 code to execute
}

A while loop will loop through the code in it's brackets until the condition in the parenthesis becomes false

msleep(time)
this command will let the robot do nothing for the specified time(milliseconds), if a motor is moving, this command
does not tell the motors to stop, they will continue to spin

This code will beep continually until the black button on the CBC is pushed*/

int main()
{
 while(!black_button())//loops while the black button is not being pushed
 {
 beep();//a beep will be heard
 msleep(500);//this is so that the different beeps can be heard separately
 }
 return 0;
}
Using an external digital sensor

/*
This code uses the command digital(port number) this command checks the port number specified for sensors that only return an on or off value, a 1 or a 0 */

int main()
{
 while(!digital(8)) //loops while the joystick sensor is not being pushed (if it is not working, try holding it, and check the port number)
 {
 beep(); //a beep will be heard
 msleep(500); //this is so that the different beeps can be heard separately
 }
 return 0;
}
/*
This code will beep continually and display: Please push the black button!!!! repeatedly, then, when the
black button on the CBC is pushed it will display: Thank You wait 2 seconds and clear the display
*/

int main()
{
 while(!black_button()) //loops while the black button is not being pushed
 {
 printf("Please push the black button!!!!\n"); //this command displays the message in the quotations, the \n goes to the next line of display space
 beep(); //a beep will be heard
 msleep(500); //this is so that the different beeps can be heard separately
 cbc_display_clear(); //this command clears the display
 }
 printf("Thank you");
 msleep(2000);
 cbc_display_clear();
 return 0;
}
Motor control and sleep commands

/*
This code will demonstrate how to use sleep functions and how to use a motor.

motor(port number, speed)
this command will tell whatever motor is in the port specified to spin at the
 speed(0-1000) specified
a positive speed and negative speed will spin opposite directions

ao()
this command stops all motors (all off)

*/

int main()
{
 motor(0,100);
 msleep(1000);
 ao();
 return 0;
}
Connecting CBC-Create Cable

Once the cable is plugged into the CBC leave it be since yanking the serial connector out could damage the plug.

Orient red to red

Serial connector Power connector
Getting the Roomba to move

/*This code is designed to drive until the black button is pushed

create_connect();
this is the command to initialize communications between the cbc and the create

create_disconnect();
this is the command to end communications between the cbc and create

create_drive_straight(speed 0-500);
this is a command line that tells the create to drive at the specified speed

create_stop();
this is the command line that tells the create to stop moving
*/

int main()
{
 create_connect();
 create_drive_straight(500); //this command is never countered, so putting it in the while loop is unnecessary because it is only needed once
 while(!black_button())
 {
 msleep(10);
 }
 create_stop(); //when there is only one command in a while loop, brackets are not needed, but tabbing it over is conventional
 create_disconnect();
 return 0;
}
Using the Roomba’s touch sensors

/*
gc_lbump and gc_rbump are the names for the built-in touch sensors on the create
create_bumpdrop() is the command line that updates those values*/

int main()
{
 create_connect();
 create_drive_straight(500);
 create_bumpdrop(); //initial update of sensor values
 while(!(gc_lbump||gc_rbump)) //this will loop until the right bumper OR the left bumper is pushed
 create_bumpdrop(); //this is used in the while loop to update the sensor values continually
 create_stop();
 create_disconnect();
 return 0;
}
Using an analog sensor with the Roomba

/*
This code uses an analog sensor which returns a variable value depending upon the function of the sensor

code is intended for use with the tophat sensor, which measures reflectivity

code uses analog(port number) is used to check the value of an analog sensor*/

int main()
{
 create_connect();
 create_drive_straight(500);
 while(analog(0)<225)//checks analog sensor (if does not work, check port number)
 msleep(10);
 create_stop();
 create_disconnect();
 return 0;
}
Sample line tracking

/*
this is simple line tracking code

create_spin_CW(speed) and create_spin_CCW(speed)
this command will spin the robot in place at the speed specified(0-500) they spin ClockWise and CounterClockWise respectively

*/

int main()
{
 create_connect();
 //note: this code is an example for line tracking, it does not work if the bot starts in the starting box
 while(!black_button())
 {
 if(analog(0)>225)//checks if the dark line is detected by the tophat sensor
 {
 create_spin_CW(20);//spins the robot in place
 }
 else//otherwise(if no line is detected)
 {
 create_drive_straight(20);//drives forward
 }
 }
 create_stop();
 create_disconnect();
 return 0;
}
Solving an open ended Problem

Ω Click on the link below

https://sites.google.com/a/ashland.k12.ma.us/robotics-club/bull-in-the-ring-stream